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MONOCHORD PROCE\DURES

SIEMEN TERPSTRA

INTRODUCTION TO THE MONOCHORD
OVERVIEW OF ITS HISTORICAL IMPORTANCE

The monochord is an ancient instrument whose origin is
obscure. It was said by the Greeks to be the invention of
Pythagoras; however, 1like most Greek musical technologies, it was
imported, probably from Babylon or Egypt. It is certainly much
older than Greek culture, and probably originated in Sumaria.

The monochord was used for a variety of purposes,
relating both to musical tuning and scientific-philosophical
speculation. It had considerable value as an experimental device.
In fact, some historians of science contend that the division of
the monochord string was probably one of the earliest
empirical-scientific experiments to be carried out with
mathematical rigor. As such it was the source of much ancient
cosmology and number-lore.

It was also employed as a practical teaching instrument
throughout the ancient world and the Middle Ages, in fact right
through the Renaissance. The instrument demonstrated the numerical
foundation of the consonances and dissonances of music. The
musical student also applied it to the study of proper vocal
intonation. It had practical applications in musical ensembles. In
the West it evolved into the clavichord (hence keyboard
instruments in general), the hurdy-gurdy, and the trumpet marine.
It was also used as a measuring tool in the design of mediaeval
bells and organ pipes.

The monochord's theoretical significance was even more
important than its practical influence. It was seen as a symbolic
device showing the mystical unity between man (the microcosm) and
the universe (the macrocosm). It was the source of much ancient
cosmology. The universe was conceived as a stretched string whose
pitches represent the solar system (musica mundana), the muses,
the zodiac, the parts of the human body, etc. Thus the monochord
numbers and divisions were alloted cosmic significance from
ancient times right up to the 18th Century. The string was often
shown being tuned by the hand of God. The universe was thought to
obey musical laws.

Hence we note its practical and theoretical influence on
musical culture throughout history. There was no more accurate
tool for the measurement of "sonic space" than the stretched
string. In fact, more accurate scientific instruments for the
calibration of musical intervals did not arrive until the late
19th Century. Now, of course, electronic means of interval
measurement are much more accurate than the monochord.



DESCRIPTION

The earliest form of monochord probably consisted of a
single string stretched across two fixed bridges on a plank or
table (see Figure 1). A movable bridge was then placed underneath
the string, dividing it into two vibrating sections. The bridge
could divide the sections in any manner, demonstrating that a
division by simple fractions resulted in the important
consonances. The positions of the movable bridge were calibrated
by marks on the table beneath the string. Hence the monochord can
best be described as a "musical yardstick" for the measurement of
ratios.

From early times the monochord became a multi-stringed
instrument tuned in wunisons so that comparisons could be made
between various divisions. The ancient name KANON is reflected in
the modern Persian multi-stringed zither which probably evolved
directly from the ancient monochord. The instrument was also known
as the "Philosopher's Lute" 1in classical China. In Japan, the
modern KOTO is based on the same movable bridge principle. Thus
the monochord was not confined to European culture. Indeed, it is
ubiquitous in the ancient world.

In mediaeval Europe, after the 12th Century, the
monochord was fitted with a resonating box and made more portable
(see Figure 2). After about 1500, monochords were built in which
one end-bridge was replaced by a nut so that the string was
lowered, enabling the user to press it directly against the belly
of the instrument, like a modern guitar. Although it was thus
simpler to wuse, it was considerably 1less accurate than the
traditional monochord. This "popular" form of monochord, however,
reflected the resurrgence of interest in the instrument during the
renaissance, which was a historical period of much tuning
experimentation.

Most mediaeval monochords were from 90 to 120 cm. in
length~--a length convenient for calibrating even micro-intervals.
For example, at 100 cm. string length, the position of a comma as
S9N "Firsr fIrvet®™ is about 1.2 cm. from the bridge. Thus
considerable subtlety was possible, even down to parts of a comma.

The accuracy of the monochord depends upon the skill of
the user as well as a number of other factors. For example, the
greater the number of steps involved in producing a desired ratio,
the less accurate 1is the result, since errors are accumulative.
There is also a built in innacuracy due to the necessity of
deflecting the string with the movable bridge. Another innacuracy
is inherent in the materials of the string itself. But, in spite
of these shortcomings, the instrument is still accurate enough to
generate all of the tuning 1lore of historical tunings and
temperaments. This tuning lore had considerable bearing on ancient
science and philosophy. It also must have profoundly influenced
the development of mathematics and abstract thought.



CALIBRATION METHODS AND CONCEPTUAL MODELS

The divisions of the monochord string can be represented
by four methods: proportional ratios, string lengths, logarithms,
and cents. The modern division by cents is derived from the 18th
Century application of logarithms to music, and cannot be directly
applied onto the instrument without further calculation. Hence I
will only consider ratios and string lengths here. The calibration
by string lengths is derivative from the proportional system. It
overcomes the cumbersome nature of fractional ratios by clearing
fractions through a least common multiple chosen as the length of
the open string.

It 1is clear that the approach using ratios and the
approach using string 1lengths are equally ancient as well as
interchangeable. However, there is a certain numerical complexity
inherent in the system of least common multiples, since many
different numbers may be wused to express the same proportional
division. For example, the musical Fifth which is defined by the
proportional ratio 2/3 may be represented as 360:540 or as
120:180. In other words, if the open string is 540 units long, the
placement of the movable bridge for the Fifth is found at 360
units from the fixed bridge. Again, if the open string is 180
units long, the Fifth is found at 120 units. Both sets of numbers
express the simple ratio 2/3 with the fractions cleared. If we
wish to express another ratio by an appropriate string length, say
the comma ratio 80/81, then we would need to use a different
overall string length in order to achieve a least common multiple
to "clear" the fraction. Hence different sets of numbers can have
the same meaning when we use the method of string lengths by
clearing fractions. We are being asked to constantly change our
perspective with regard to the meaning of the numbers according to
the tuning situation at hand. This approach was used by the Greeks
and the Babylonians, even though the 1latter had no problems
handling complex fractions. (They used base 60 for their
mathematics, a number base peculiarly suited for monochord
investigations).

Obviously, the <constant within this flux of musical
arithmetic is the ratio itself, expressed in simplest numerical
terms. The musical Fifth is found at 2/3rds of the string length,
no matter what numerical "index" we use in order to express it.
Thus I would consider the ratio itself as of primary interest. For
the sake of clarity, I will concentrate on the ratios in this
short article, and leave the detailed approach to
least-common-multiple string lengths for the companion article
entitled MONOCHORD NUMBERS. However, the two articles are meant to
be considered together. Each throws light on the other. There will
be occasional cross-overs in both articles to clarify matters.

When expressing the ratios we must distinguish between
the frequency ratios and the ratios of string length. Frequency is
inversely proportional to string length when other factors (eg.
string tension) are kept constant. This scientific law is at the
heart of the monochord's utility as a measuring device. For an



example of this 1law, consider that the raising of pitch by a
musical Fifth is expressed by the frequency ratio 3/2, but it is
found on the monochord by dividing the string by 2/3. Also, the
lowering of pitch by a Fifth 1is expressed by frequency ratio 2/3,
but it is found on the monochord in dividing the string by 3/2.
Now this division would mean lengthening the string by a third, an
impossibility if we are starting with the open string. However,
such a "descending" division can be possible if we start with part
of the string (for instance, the octave). I will explain these
proce?dures latter. The main point to grasp here is the fact that
we can generate the same information whether we wuse frequency
ratios (as 1is the modern tendency), or whether we use ratios of
string length (as is the ancient approach). Both ways of looking
at it show the inherent polarity of musical pitch (up and down).
Apparently, the ancients were not aware of frequency, but this was
no handicap in their analysis of consonance.

We shall <calibrate a monochord string whose active,
vibrating length is unity or one. We define the right-hand end of
the string as the fixed bridge, and the left-hand end of the
string as the "nut," as on a modern guitar. The string, vibrating
as a whole, 1is shown on Figure 3. This diagram illustrates the
division of the string by one, resulting in the musical Unison.
The string division 1is shown under the string, and the frequency
ratio and musical interval above it. To the right, the resulting
musical tones of the two vibrating portions of the string are
marked on the Grand Staff. The open string is tuned to our
reference pitch of Tenor C.

When the movable bridge is placed in the exact middle of
the string, indicating a division into two halves, the musical
Octave is produced. See Figure 4. Both the left-hand side and the
right-hand side of the divided string sound the Octave above the
open string, as shown on the Staff to the right. By this simple
division we produce the strongest consonance after the Unison.

Figure 5 and Figure 6 show the two positions which
result from the division of the string into three segments. These
positions show the Just Musical Fifth and Twelfth which are the
next strongest consonances. The two segments of the string relate
by an Octave. These placements co-incide with the positions of the
Third Harmonic (frequency ratio 3/1) of the string. Note that
Figure 6 can be considered redundant since there is no new
information not already seen in Figure 5. The notes have simply
exchanged places.

A division of the monochord string by four results in
three possible placements of the movable bridge. These placements
are one-quarter of the distance from the nut, one-quarter of the
distance from the bridge, and the mid-point. But the mid-point
position was already considered on Figure 4. The other two
positions are shown as Figure 7.

The 3/4 position is associated with the Just Musical
Fourth. The 1/4 position is the Fourth Harmonic or Double Octave.



Four, of course, is two times two, and there is every reason to
believe that the ancients knew that powers of two connect with
octaves. Two 1is the Pythagorean "matrix" number, the "mother"
whose cyclical identity is the natal womb of the other musical
intervals. Even numbers, divisible by two, were considered female.
They do not produce new tones, only octaves of tones already
generated by the male, odd numbers. The prime male numbers three
and five generate the field of Just Intonation.

The ancient Greek scale system divided musical space
into a double octave, the ratio 4/1. Also, the musical Fourth,
frequency ratio 4/3, was the all-important tetrachord interval of
Greek and Hindu music theory. The octave could be shown to consist
of two falling tetrachords, C-G and F-C, connected in disjunct
fashion by a 9/8 wholestep between G and F. It was also seen as
two falling tetrachords, F-C and C-G, joined in conjunct fashion
with an added wholestep to complete the octave. Figure 8 shows the
metrical properties of these three pitches, C, F, and G, on the
Circular Graph (a logarithmic analog in which intervals expressed
as ratios or cents are converted to degrees of arc. 360 degrees is
defined as an octave, and clockwise movement indicates falling
pitch).

In ancient Greek and Hindu musical theory, the
Tetrachords between C, F, and G were considered the axis of fixed
tones for the creation of modal scales. The other pitches which
divide the Tetrachord into further scalar tones were considered
mutable or expressible through alternative ratios. The importance
of this central axis is perpetuated in the modern concept of the
Tonic, Dominant, and Sub-dominant.

The Pythagorean approach to division by proportions was
based on the relationships between the three Means--Arithmetic,
Harmonic, and Geometric. The Arithmetic and Harmonic Means result
in simple numerical ratios of musical significance in Just
Intonation. The Geometric Mean, on the other hand, produces
irrational ratios which are associated musically with temperament
(controlled mis-tuning of the normative Just ratios). The
Arithmetic and Harmonic Means of the Octave give us the Fourth and
Fifth. The Geometric Mean gives J2--a tempered form of the Just
Pritones 7/5, 10/7, 45/32, and 64/45.

The concept of the Mean had great philosophical appeal
to the Greeks, Babylonians, and Chinese, who saw life as a dynamic
balance between the play of opposites. A finite, orderly mean
between two extremes would share in the quality of the extremes,
yet bring order out of chaos. The Mean itself would be a direct
descendent of the original complimentarity and share in its life
energy. It must have been a source of great intellectual pleasure
to the Greeks that the Means of the all-important Octave are the
important consonances of the musical Fourth and Fifth.

Moreover, the inherent ratio numbers involved, 1, 2, 3,
and 4, add up to the Pythagorean sacred number 10 and associate
with the revered Tetractys. We shall see that the Tetractys is



also connected with the proportional series 1:2:3:4:5:6:7:8:9:10
which are the consonant ratios of over-riding importance in tuning
systems. The implications of the doctrine of Means are explored in
detail in the associated article THE MEANS AND MUSIC.

If we wish to demonstrate the important ratios 2/1, 3/2,
and 4/3 on the monochord without fractions, we must divide the
string into twelve sections. 1In other words, we must use twelve
units as our least common multiple string length. See Figure 9.
Here we have the source of the so-called "Musical Proportion"
6:8:9:12, which Pythagoras reputedly brought home from Babylon.
These numbers are multiples of the two primes, two and three.
Remember that these numbers can apply to both rising and falling
sequences of pitch, that is, to both multiples and sub-multiples
of the unit string 1length. Thus F and G can exchange places as
Arithmetic and Harmonic Means to C. See Figure 10. These musical
inversions function in reciprocal ways as means. From the Circular
Graph (Figure 8) note that, in relation to F and G, the generator
tone C functions visually as a Geometric Mean. We shall see that C
forms such a constant between any interval and its musical
inversion. The dotted line on the Circular Graph which connects C
and A2 is the axis of symmetry for these inversion pairs (more of
which are shown on Figure 19).

We can also express the harmonic relations between the
ratios 1:2:3:4 through the Field Diagram which is a practical
guide to Just Intonation tuning. See Figure 1l. The generator
pitch C is 1 (the First Harmonic). The pitch G, a pure musical
Fifth above C, 1is found by forming a beatless unison between the
Third Harmonic of the C string and the Second Harmonic of the G
string, as shown on the Staff. The pitch G, a pure musical Fourth
below C, shown in brackets, is found by forming a beatless unison
between the Third Harmonic of the C string and the Fourth Harmonic
of the G string, as shown on the Staff. Looking at the
reciprocals, F a pure Fourth up in pitch 1is found by forming a
beatless unison between the Fourth Harmonic of the C string and
the Third Harmonic of the F string. F a musical Fifth down in
pitch from C is found by tuning a beatless unison between the
Second Harmonic of the C string and the Third Harmonic of the F
string. Performing these tuning operations is easier t han
describing them! These operations may be performed on any stringed
instrument, including the monochord.

Lastly, the harmonic relations between ratios 1:2:3:4
may be represented in an even more abstract manner as Figure 12.
The central Octave is represented by the double 2-4 in the square
brackets, and the reciprocal relations of the number 3 are
presented on either side--as an "over number"to the right, ie.3/2,
and an "under number" to the left, ie. 2/3. It can easily be seen
how this abstract representation of the number field leads to the
tuning pattern shown below it. Expansions of similar patterns with
a larger double as "index" in the centre, integrate greater
portions of the number field and form the Field Diagram of Just
Intonation. These patterns were drawn in the sand using pebbles as



place markers and constituting the Pythagorean PSEPHOI-ARITHMETIC
(literally "pebble-arithmetic").

These abstract number games of the ancient philosophers
were probably all derived from tuning operations on the monochord.
This instrument, combined with the Circular Graph and the "pebble"
arithmetic, formed a powerful set of interlocking conceptual tools
for the description of a musical interpretation of the number
field.

The division of the monochord by the prime number five
introduces a whole new set of consonances to music. Five is male,
like three, but five is characterized as the "human" male number,
as opposed to three, which 1is the "divine" male number. Ratios
involving the number five introduce the so-called "Imperfect
Consonances" of the Just Major Third (frequency ratio 5/4) and the
Just Major Sixth (frequency ratio 5/3). These ratios and all
subsequent ones divide the tetrachord into smaller portions.

The four new positions of the movable bridge are shown
on Figure 13. The frequency ratio 5/1 is the Fifth Harmonic which
is two octaves and a Major Third above the fundamental. 5/2 is an
octave and Major Third above, and 5/4 is the Just Major Third
itself. 5/3 1is the Just Major Sixth above C. In order to produce
the inversions of these intervals on the monochord, we must divide
the string by six and eight, since the inversion of the 5/3 Major
Sixth is the 6/5 Just Minor Third, and the inversion of the 5/4
Major Third 1is the 8/5 Just Minor Sixth. The relevant monochord
positions are shown as Figure 14.

It 1is clear that tuning operations involving the Fifth
Harmonic need a separate tuning axis on the Field Diagram, since
powers of three and powers of five are incommensurate. The layout
of these important consonances is shown as Figure 15. This pattern
is called the Harmonic Heptad, and forms the nucleus of the Field
of Just Intonation. (For an extensive description of the Field of
Just Intonation and deviations from it, see the associated article
THE MEANTONE SERIES OF CYCLICAL TEMPERAMENTS). Just Intonation is
defined by ratios formed from numbers which are powers of the
numbers two, three, and five. Since powers of two are hidden, due
to the principle of Octave Equivalence, the Field of Just
Intonation can be modeled after the lattice of the 3 * 5
Multiplication Table. These ratios may all be derived from the
correct arithmetical calculations coupled with the appropriate
monochord proceédures. I will outline these proceédures after a
consideration of the Septimal ratio consonances.

The division of the monochord by seven introduces a
whole new set of consonances which are incommensurate with powers
of two, three, and five. However, as shown in the article
mentioned above, they form "near misses" to certain 3 * 5 Just
Ratios. Therefore they are present within the Just Lattice in a
"hidden" manner. The number seven was associated with mystery and
the hidden in ancient number symbolism, a symbolism justified by
its musical character.



The six positions of the movable bridge which result
from the division by seven, as well as two positions from the
eight division which form septimal ratios, are shown on Figure 16.
The ratio 7/1 is the Seventh Harmonic which is a sharp sixth (or
sub-minor seventh) above the double octave. Ratios 7/2 and 7/4
represent lower octaves of this interval, 7/4 being the sub-minor
Seventh itself. The ratio 7/6 represents the sharpened wholestep
or sub-minor Third. 7/3 is its octave transposition, the sub-minor
Tenth. The ratio 7/5 is the Just Septimal Tritone or the sub-minor
Fifth.

The frequency ratio 8/1 1is, of <course, the triple
octave, being two to the third power. The ratio 8/7 is the
Septimal Wholetone or Super-second, the inversion of the Sub-minor
Seventh (7/4). Other inversions of Septimal ratios need further
divisions of the monochord. For example, the inversion of the 7/5
tritone is the 10/7 Septimal Diminished Fifth. The inversion of
the 7/6 Septimal Minor Third is the 12/7 Septimal Major Sixth (the
Super-major Sixth).

One more inversion pair of Septimal intervals should be
noted. The 9/7 Septimal Major Third (Super-major Third) and its
inversion, the 14/9 Septimal Minor Sixth (Sub-minor Sixth or Sharp
Fifth) require a different division of the monochord string. These
two ratios complete the set of prominant Septimal consonances.

The various positions of the division by nine, without
redundancies, are shown on Figure 17. The most important new
consonances are the frequency ratios 9/8, the Major Wholetone or
Pythagorean Wholetone, and the 9/5 Just Minor Seventh.

The prominant positions of the division by ten are shown
on Figure 18. An important new ratio appears which 1is the
inversion of the 9/5 Minor Seventh, namely the 10/9 Just Wholestep
or Minor Wholetone. This interval is a syntonic comma flat of the
9/8 Major Wholetone.

The division by ten for the first time brings into
relief the comma which is the fundamental building block of Just
Intonation and its close cousin--53-Equal-Temperament. Just
Intonation is best seen in a practical sense as a scale of commas.
Hence the number ten and the ratios 8:9:10 have great importance
in tuning theory. Remember that the Tetractys can be interpreted
on one level as the set of consonant epimoric ratios contained
within the series 1:2:3:4:5:6:7:8:9:10. To the Pythagoreans, the
Tetractys (encompassing the first ten numbers) underlied "the
pattern and type of all nature" (from Plato's EPINOMIS). The
Pythagoreans saw nature in musical terms. Indeed, "musical
nature,”" in the form of the Field Lattice of Just Intonation, is
generated through the comma scale. All prominaint forms of musical
tempering are best visualized with reference to this lattice. The
use of the comma provides an adequate "mapping" of sonic space, as
is shown 1in the article on the MEANTONE SERIES OF CYCLICAL
TEMPERAMENTS. Hence the importance of the number ten.



Some of the prominant ratios of Just Intonation are
illustrated on the Circular Graph on Figure 19. The Tetrachord
frame is drawn in, and inversion pairs of intervals are connected
by dotted lines. Accompanying this Graph is the associated Lattice
showing the placement of these musical ratios for tuning purposes.

The first ten numbers had special prominance for
Pythagoras, Archytas, and Plato. But, of course, we need not stop
there in our divisions of the monochord. The next division
involves the prime number eleven, and we rightly suspect that a
whole new series of musical intervals are introduced. This series
of ratios has not been intregated into classical European music
culture. On the other hand, these "neutral" intervals have been
used in Persian and Middle Eastern music, as well as some
classical Greek scales.

The ten positions of the movable bridge associated with
this division are shown on Figure 20. Figure 21 shows the
prominant intervals associated with the Eleventh Harmonic, as well
as their placement on the Circular Graph. We associate these
ratios with the "neutral" intervals which fall approximately
between the major and minor forms.

With these ratios we are approaching a saturation of the
Harmonic Field. For example, ratios 11/10 and 12/11 are only 14.4
cents different in pitch. Also, 11/7 and the Just Sharp Fifth
(ratio 25/16) are only 9.9 cents different in pitch. All of these
ratios derived from the Eleventh Harmonic are sonically close to
some pitch from the extended Just Field. It seems that we have
stepped through a "harmonic boundary" in going beyond ten. It
could be argued that we have already witnessed saturation with the
Septimal Ratios, since they closely approximated extended Just
ratios. However, the Septimal Ratios can be integrated into the
Just Field of commas with only slight innacuracy; whereas, the
Eleventh Harmonic ratios (and beyond!) cannot be integrated with
the same ease. The Septimal Ratios are also much more important
from a practical musical standpoint. The neutral intervals are
rightly associated with the Harmonic Antipodes of the Just Field.
They represent the "outer reaches" of the field of harmony.

Ratios based on higher prime numbers, eg. 13, 17, 19,
and so on, quickly saturate the Harmonic Field. The complexity
becomes unmanageable. Hence, we will not continue with further
prime numbered divisions of the monochord. We are again reminded
of the Pythagorean association between the number ten and the
macrocosm,

MONOCHORD PROCEFDURES

Any of the ratios of the Just Field, no matter how
complex, can be found on the monochord if one uses the proper
proceédure aided with some elementary arithmetic. I will give some
examples, both simple and complex.



Suppose we wish to find the sum of the Major Wholetone
(frequency ratio 9/8) and the Minor Wholetone (10/9). To add
musical intervals we multiply their ratios. Thus 9/8 * 10/9 = 5/4,
the Just Major Third. In order to apply this computation to the
monochord, invert the ratios so that we deal with string lengths.
Now 8/9 * 9/10 = 4/5. We now have the choice of measuring 4/5
directly on the instrument or of applying the multiplication on
the instrument. This second approach is less accurate because we
must take two measurements rather than one. Errors are
accumulative. The proceé&dure is shown on Figure 22.

In this case it is definitely easier to measure the 4/5
directly on the instrument instead of going through the
multiplication proceé&dure. On the other hand, if we were adding
9/8 and 9/8 to get the dissonant Pythagorean Major Third (81/64),
then the two step method may be preferable.

We can also subtract intervals on the monochord. Suppose
we wish to subtract a Sub-minor Third from the Octave. 1In
frequency ratios the computation is 2/1 * 6/7 = 12/7 (the Septimal
Major Sixth). The monochord procegdure is shown on Figure 23. In
this case it probably would have been easier to do the arithmetic
and then measure the 7/12 position directly. However, given a more
complex computation--for instance, the Septimal Sixth subtract the
Just Major Third (frequency ratios 12/7 * 4/5) to get the
dissonance 48/35--a direct measurement is not as easy as the two
step process.

We can only subtract intervals if the remainder is above
the open string in pitch, since the string cannot be lengthened.
Thus a computation 1like a Just Fourth subtract a Just Fifth
(frequency ratios 4/3 * 2/3 = 8/9) is impossible since we cannot
move the bridge to 9/8ths of the open string length. Aside from
this limitation, however, any subtraction is possible.

The ancient writers associated the proce&dures which
result in falling pitch with a "speculative" use of the monochord,
and the procegdures associated with rising pitch with the
"practical" use of the instrument. This dichotomy must have been
yet another expression of the inherent polarity of musical pitch.
Obviously, computations which involved both lengthening and
shortening the string were accomplished. The Greeks, however, did
theorize the scale as a falling pattern, so that its application
on the monochord involved starting with the Octave (string ratio
1/2) and progressively 1lengthening the string to reach the next
lower Octave (the open string). The Mediaeval theorists reversed
the process. We inherited the Mediaeval view, so that we see the
scale as a rising progression.

The Greeks thus started their tunings from the middle of
the string and worked down. But we have ample evidence that the
given tuning also went "up" as well as down. The Greeks saw the
"musical world" as a two octave structure. We are reminded of the
quote from Philolaos: "The world is One; it began to develop from
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the middle." In other words, tuning theory begins with Unity, but
on the practical level it starts at the Octave and proceeds down.

Whole strings of computations are possible on the
monochord if the user is comfortable with the arithmetic involved.
For example, suppose we wish to "sound" the Pythagorean Semitone
or Limma (frequency ratio 256/243). Now here is a complex ratio to
measure directly, but its derivation is simple enough. It is the
interval "left over" when two Pythagorean Wholetones (frequency
ratios 9/8 * 9/8 = 81/64) are subtracted from a pure Fourth (4/3).
Thus the problem is best pictured in frequency ratios as 4/3 * 8/9
* 8/9, or in string lengths as 3/4 * 9/8 * 9/8--a simple enough
manouvre when done on the instrument. See Figure 24.

It seems quite 1likely that the ancient tuner "roamed"
over the entire Harmonic Field of Just Intonation and was aware of
all the important boundaries involved, namely the Schisma
interval, and the Enharmonic Gateway. The morphological structure
of this Field was expressed in allegory through the old writings
of Greece and the Near East. The monochord and the pebble
arithmetic went hand in hand to "map" sonic space through numbers.
These musical numbers were then extrapolated into the fields of
cosmology, astronomy, engineering, architecture, politics,
mythology, and so on.

THE LAMBDOMA

I conclude this introduction to the monochord with a
brief consideration of the ancient PYTHAGOREAN TABLE or LAMBDOMA.
The Neo-Platonist writer Iamblichus named it the Lambdoma because
of its similarity in shape to the Greek letter Lambda. It is a
clear and concise way of expressing the monochord ratios in a
manner which balances the polarity between string division and
multiplication (or the polarity between the Harmonic Series and
the Sub-harmonic Series). This table was rediscovered in the 19th
Century by Albert von Thimus (DIE HARMONIKALE SYMBOLIK DES
ALTHERTHUMS, 1868-72). Its true antiquity is unknown.

This table, along with the Field Diagram, is an
important key to Pythagorean Philosophy. For even though the
monochord string could only be divided in actual practice, it
could be multiplied through inductive reasoning once polarity is
established. The table shows the symmetry between the two
operations.

The Lambdoma is presented as a ratio field on Figure 25,
and as its equivalent field of pitches on Figure 26. I have used a
limiting index of twelve, but the table could be extended
theoretically to infinity. Lines are drawn connecting some
identical tones. For example, 1/1, 2/2, 3/3, 4/4 and so, or again,
/9,  2/4; 346, 4/8, 5/10 and so on. These lines are called
identity rays. Note that they all converge at one point which
could be considered the source, or 0/0--silence. The manifest
world has 1its origin in the One (Monad) which becomes two (the
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Octave). A primary trinity exists between 1/1, 1/2, and 2/1. The
numbers one and two were considered "principles" of number rather
than numbers themselves. One is the Divinity from which all
manifest nature comes. Two 1is the matrix which creates the
essential polarity of existence. Three is the first number, and it
is sufficient to produce the "multitude," for operations involving
powers of three divide the octave into (eventually) the comma
scale. Five is the human number because the Schisma interval can
be considered subliminal to human hearing, hence the integration
of the 3 * 5 Harmonic Field. Note that the natural Major Triad
stems from the Third, Fourth, and Fifth Harmonics. The Just Major
and Minor Triad is the archetype and paradigm of the Harmonic
Field.

The Lambdoma has a direct connection with the monochord.
It is 1less abstract than the Field Diagram, because the Field
Diagram uses Octave Equivalence to simplify the expression of the
3 * 5 number field. In the Lambdoma we are again reminded of the
pattern of the Tetractys:

173
2/1 1/2
3/1 2/2 1/3
4/1 3/2 2/3 1/4

It is clear that the Tetractys, as a symbol, can be interpreted on
many levels, for it also appears as an important pattern in the
Field Diagram.

The Lambdoma logically summerizes the operations on the
monochord when we conceive the ratios as proper fractions of
string length. However, if we use a least common multiple to clear
fractions on the instrument, then the Field Diagram naturally
emerges as the most logical "map" of the Harmonic Field. Hence the
Field Diagram takes precedence in the article on MONOCHORD
NUMBERS.
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Fiqure 15 : The Harmonic Hclyfmo{—ﬂqe nucleus of the
” field of Just Intonation :
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Fiqure 16 : Division of +the monochord by Seven :
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Figqure [7: Division of the Monochord b)/ Nine
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FlaLure 22: Broblan- to find the sum of a Ma or Whoktone
end a Minor Wholetone (e "I/XX 10/ ):

Solution: First, meqsure off o Major Wholetone (5/9):
& —— s
Q=) 5

SCCOY\JI’ use ch remaginin IQMﬂHq 0”40{ mecsure O'FF
a Minor Wholetone Cf/IO;

4 b T

T9x 90 =T

Now this computution will result jn +he movable brnd{ﬁe
bemrq4 pos:%;o[ea{ at y)rl/»e Mo OrTle‘ﬂ{ 4/5) Ervors
a{eF on The accaracy ofJ‘qu %9 and 9:10 measurement 5.
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Eﬁ‘/ﬂ’@ 23 . FVOH&M'—’{’O 5Mb+rmc+ a smlo -Mminor T[mrd (Fre

ratio 6/7) from the octave (2//), fe. 2/ x 6 /71 . r
Solution Firsf', measure 05€ an octave (1/2):

4 O

(:2) S |

56cowa{ use 'qu remainin aﬂa ama{ Smlo‘/’rch A
Smbmmor 'H/),v\yf Kemew; '[‘Lwc INVersion— we Mmu S'{'

multiply the enﬁﬁx by 7/é ;
4 =,

B2 x T4= 10

Now 'H/)S CDVHPM‘{%(‘)L'OM rESMH’S in 'Hne br‘n:/{ {éiceWIGVFL
bcmfj 7//2 H/)ﬁ Super—MaJm— (5<p+/mz4!> glxﬂx Thau
‘qu strin he ICM thened as well as Sl/mrfcnedf,

ﬁ S 1% is not [Engthened bC ond the full
CMﬁH/) Gireck monoch or +w1 Y +mm ition oA :dm‘e(/{
bC mmm WIH’\ the octave and r@qressn/c/ /crﬂ L,e_n.y,
the stri ih Yuning Scales. que_ Grreeks cg cei

scale as Va fallin H’erh not a l"lSIhq one as d(la(
the mediaeva| theovists.



Fiqmr‘c 2"*‘ Prob!cyn: cam[Jm"e H)E loflfl&\?orcom SC"M‘{'Ohc or
9 Livma (Fveiuenc)/ retio 2‘55/243) on The

monochord

Solution : When ﬁfemf}na with a Complex ratio 5 i one Aoes
not wish todmeasure it divectly vin fhe Ih5'/')’(4mey)+)
the hes+ ﬁlpf)yo&icﬁ, 1s 7('0 brc&\k +L7€ Frach/oy\
down into' 'sim onants . In +his case

e Com
‘51Lr~mj ratio 2 3/25éf3/4><‘?/5/x7/5/ IF the'se

factors are not obvious the | roach is
to €ind +he rm/re Fqcfov's of H«e Cfxfl lex ratio.
Thus 243= 2% gnd 28 2%  The), ‘quse rime

factors may be combined o Form s:vn/gz ratios

as cabove

In “FPI)”“ﬂ 243/256 = 3/4 x U/7 x Y% +o the instrument :
First, measure off the 3/4 ratio’

4 —— e

(1:4) 24

5<<onc/f use the mmmmm nath and measure off a M"J"’"
Wwaef'one. Aown in /:n%cln S‘frl /<n7‘Hf1 6(/‘8’)'.

WL
B4 x % (= 27:32)

T['nr‘d(, use 'Hms rémainim leh -Hq 1"0 mweasure mc{-— &mo%tr
MétJoY Whole tone down j g

: i o

TPy Ty = 243/256

1his /yos’nLion will how give us +he a{es‘;rea( ratio 243/7.54,

ObV|OMS7/ since ‘qurg are TLLW(?— W)CMSI/IV‘CMCV\','S L?Cr‘c '{’[ﬂ)"e IS
ojrcarl—er f/< [ihhood of immaccuvracy — Since errors arc acecumulative,
The <€)/ fo rEo(MC’nn the awmount o€ error is to /<€€/o the number
of steps +o o Vn\vj»mum . For,ns{-ancc/,‘f'be sf‘rmc ratio
243/725¢6 could also have heenw seen as o l” ﬁm orc n M'hor‘
Thivd (7.7/’37.) subtract a Wholetone (af/S’ hat only two
measurements need [ made instead of +hree Thus H/
ef€icient use of +he monochord entailed some skill in homaf/mj
the agrithmetic of ratios,



F{f(;mre 25 : The Lambdoma (ﬂ%aﬂoream Table ) :

SL\OWM;

of the monochord < riMj . The

Greek leHer
Lambd a

A

Limit of Senarins
Ratios

Limit of
E+rﬂc{‘>/5
Ratios

Since frequenc
s invusez [yrzjoor('}oyml
to strin [{n H\, the
table CMQ\ qlpo refer +o
the frequencies whicl result i
from Hhe division and mmlﬁplicmLiOh
o('- the SlLr‘imj !lnj'Hﬂ
ConSeimenH 7-”)e le€1 le
reSevs”to the Hermonic iriﬁs
(OVeﬂLch Series)) and +he ri 144'
[eﬂ refers +o the “Sub-harmonic ﬂscrits
VCCiFt’OCqI overtone series) .

the reciProci{' befween the division and the mm”‘i[all'cﬁ"'?on

VicJH'—laoma‘ side follows the

Sys{'emm‘f‘ic wision of +he
61Lrin , the left-hand side
its qMMH'iP“Cm+iOV}. Both
Ie35 can be extended 1o
in€init - butare here
qrb'ﬂ‘mr}l{ cut off at

index |

Another way of imo‘icmLiwq
the relation hetween Frertmcﬁ’c/v

ond strin /enjw(‘h is Su'mla//v to
reverse fthe ch{’ions. Tlf\eh
qu V‘iij‘f' /ea refers o H/)c H&er"OMiC
Series’, and Hhe left leq to the
r-eciprocaf SerieS.qu';so\ yoqc[q
is followed when referving +o
the Following diasram j
which convers ratios to
musical P}‘IL(_L\ZS ?



Fiqj_ure 26 . The Lambdoma (P}/%mjormm Table) -

With ratios converfed fo F|'+¢L\ names . SMPe)fS(riPT"S refer 4o
the octave number above Fhe penemﬁ’m* fOV’C, and Subfcn’f){-s
reSer to the octave npumber below +he ﬂene;faql-or fone .

The left half shows the _.;:ffj??‘.jf;_ The right half shows the
ofiv,’siog» of the sﬁiy)ﬁ*.lem ‘Hq,

associated with mu /J/i Ution
of frequency and with
the “Havrhonic Series .
All PH‘CL‘CS are L);‘GL\CV‘
than +he jCMErO\'/'or
tone C.

......

multiplication of the SHMj
leng th , dssociated with
+he' division of FreilACnc)/ ;
dnd with the Keciproca!
or Sub-harmonic gzries.
All P;+ches are
lowev- “Hq&fn ‘H)?-
:jevxerﬂ'l'or tone
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